Adaptive and Optimized RDF Query Interface for Distributed WFS Data
نویسندگان
چکیده
Web Feature Service (WFS) is a protocol for accessing geospatial data stores such as databases and Shapefiles over the Web. However, WFS does not provide direct access to data distributed in multiple servers. In addition, WFS features extracted from their original sources are not convenient for user access due to the lack of connection to high-level concepts. Users are facing the choices of either querying each WFS server first and then integrating the results, or converting the data from all WFS servers to a more expressive format such as RDF (Resource Description Framework) and then querying the integrated data. The first choice requires additional programming while the second choice is not practical for large or frequently updated datasets. The new contribution of this paper is that we propose a novel adaptive and optimized RDF query interface to overcome the aforementioned limitation. Specifically, in this paper, we propose a novel algorithm to query and synthesize distributed WFS data through an RDF query interface, where users can specify data requests to multiple WFS servers using a single RDF query. Users can also define a simple configuration to associate WFS feature types, attributes, and values with RDF classes, properties, and values so that user queries can be written using a more uniform and informative vocabulary. The algorithm translates each RDF query written in SPARQL-like syntax to multiple WFS GetFeature requests, and then converts and integrates the multiple WFS results to get the answers to the original query. The generated GetFeature requests are sent asynchronously and simultaneously to WFS servers to take advantage of the server parallelism. The results of each GetFeature request are cached to improve query response time for subsequent queries that involve one or more of the cached requests. A JavaScript-based prototype is implemented and experimental results show that the query response time can be greatly reduced through fine-grained caching.
منابع مشابه
Adaptive Integration of Distributed Semantic Web Data
The use of RDF (Resource Description Framework) data is a cornerstone of the Semantic Web. RDF data embedded in Web pages may be indexed using semantic search engines, however, RDF data is often stored in databases, accessible via Web Services using the SPARQL query language for RDF, which form part of the Deep Web which is not accessible using search engines. This paper addresses the problem o...
متن کاملDREAM: Distributed RDF Engine with Adaptive Query Planner and Minimal Communication
The Resource Description Framework (RDF) and SPARQL query language are gaining wide popularity and acceptance. In this paper, we present DREAM, a distributed and adaptive RDF system. As opposed to existing RDF systems, DREAM avoids partitioning RDF datasets and partitions only SPARQL queries. By not partitioning datasets, DREAM offers a general paradigm for different types of pattern matching q...
متن کاملDesign and Implementation of OGSA-DAI-RDF
This paper presents the OGSA-DAI-RDF middleware that extends OGSA-DAI access to RDF database s ystems, e.g., Sesame and Jena. Several OGSA-DAI activities for handling RDF data and ontology are imp lemented. The query language interface is based on SPARQL query language. Introduction The National Institute of Advanced Science and Technology (AIST) of Japan started a 5-year project called AIST-SO...
متن کاملCAP7: Searching and Browsing in Distributed Document Collections
This paper describes CAP7, a system for searching and browsing in distributed document (metadata) collections. The system architecture is similar to Harvest, comprising gatherer components and a retrieval engine; but instead of the limited SOIF data format, we use RDF and XML. The gatherer creates RDF metadata descriptions of collected resources. Before delivering the data to the retrieval engi...
متن کاملEvaluating SPARQL Queries on Massive RDF Datasets
Distributed RDF systems partition data across multiple computer nodes. Partitioning is typically based on heuristics that minimize inter-node communication and it is performed in an initial, data pre-processing phase. Therefore, the resulting partitions are static and do not adapt to changes in the query workload; as a result, existing systems are unable to consistently avoid communication for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ISPRS Int. J. Geo-Information
دوره 6 شماره
صفحات -
تاریخ انتشار 2017